Skip to main content

Power

Learning Objectives

  • Define power in the context of electric circuits.
  • Describe the relationship between voltage (V) and current (I) and their role in power.
  • Use and manipulate the basic power formulas to compute power consumption.
  • Compute power in series, parallel, and series-parallel circuits.
  • Explain passive sign convention and interpret positive/negative power.
  • (Advanced) Recognize power concepts for AC circuits: instantaneous, average, apparent, reactive power, and power factor.

Quick Definition

Power is the rate of energy transfer — how quickly electrical energy is converted into another form (heat, light, mechanical work, etc.).

  • Instantaneous power (time domain): p(t)=v(t)i(t)p(t)=v(t)\,i(t)
  • For steady DC, power is constant and measured in watts (W).
  • Energy is the integral of power: E=PdtE=\int P\,dt. For constant PP, E=PtE=P\cdot t (Joules).

Core Formulas (DC / Instantaneous)

  1. Basic:

    P=V×IP = V \times I
  2. Combine with Ohm's law (V=IRV=I\,R) to get:

    P=I2RandP=V2RP = I^2 R \qquad\text{and}\qquad P=\frac{V^2}{R}
  3. For time-varying signals (instantaneous):

    p(t)=v(t)i(t)p(t) = v(t)\,i(t)

    Average power over time TT:

    Pavg=1T0Tp(t)dtP_\text{avg} = \frac{1}{T}\int_{0}^{T} p(t)\,dt

Units and Prefixes

  • 1 watt (W) = 1 joule/second.
  • Common prefixes: mW (10⁻³ W), W, kW (10³ W), MW (10⁶ W).
  • Horsepower: 1 hp ≈ 745.7 W.

Passive Sign Convention

  • If current enters the terminal of an element labeled with the positive polarity of voltage, then P=VIP=V\cdot I is positive → the element absorbs power (consumes).
  • If P<0P<0, the element is supplying power (a source).
  • Conservation: In any complete circuit, algebraic sum of powers = 0.

Power in Series and Parallel Circuits

Strategy

  1. Simplify the circuit (series/parallel reduction).
  2. Find total current/voltage.
  3. Work back to find currents/voltages on each element.
  4. Compute power (P=VIP=VI, I2RI^2R, or V2/RV^2/R).
  5. Verify conservation of power.

Series Circuits

  • Current is the same: I=IseriesI=I_\text{series}.
  • Pi=I2RiP_i = I^2 R_i.

Parallel Circuits

  • Voltage is the same: V=VparallelV=V_\text{parallel}.
  • Pi=V2RiP_i = \dfrac{V^2}{R_i}.

Worked Examples

Example 1 — Series Resistors (DC)

12 V source, R1=2 ΩR_1=2\ \Omega, R2=4 ΩR_2=4\ \Omega.

  • Rtot=6 ΩR_\text{tot}=6\ \Omega
  • I=12/6=2 AI=12/6=2\ \text{A}
  • P1=I2R1=8 WP_1=I^2R_1=8\ \text{W}
  • P2=I2R2=16 WP_2=I^2R_2=16\ \text{W}
  • Source power: 122=24 W12\cdot2=24\ \text{W} ✅ Balanced.

Example 2 — Parallel Resistors (DC)

12 V source, R1=3 ΩR_1=3\ \Omega, R2=6 ΩR_2=6\ \Omega.

  • I1=12/3=4 AI_1=12/3=4\ \text{A}, P1=48 WP_1=48\ \text{W}
  • I2=12/6=2 AI_2=12/6=2\ \text{A}, P2=24 WP_2=24\ \text{W}
  • Source: I=6 AI=6\ \text{A}, P=72 WP=72\ \text{W} ✅ Balanced.

Quick Reference Table

QuantitySymbolFormula (DC)
PowerPPP=VIP = V \cdot I
Using Ohm’s lawP=I2RP = I^2 R
Using voltage onlyP=V2RP = \dfrac{V^2}{R}
EnergyEEE=PtE = P \cdot t (J)

Practice Problems

Problem 1 (Easy)

A 9 V battery is connected to R1=1 ΩR_1=1\ \Omega and R2=2 ΩR_2=2\ \Omega in series.
Find the current and power in each resistor.

Solution:
Rtot=3 Ω,I=3 AR_\text{tot}=3\ \Omega,\quad I=3\ \text{A}
P1=9 W,P2=18 WP_1=9\ \text{W},\quad P_2=18\ \text{W}


Problem 2 (Medium)

24 V source, Ra=8 ΩR_a=8\ \Omega, Rb=12 ΩR_b=12\ \Omega in parallel.

Solution:
Ia=3 A,Pa=72 WI_a=3\ \text{A},\quad P_a=72\ \text{W}
Ib=2 A,Pb=48 WI_b=2\ \text{A},\quad P_b=48\ \text{W}
Source: I=5 A,P=120 WI=5\ \text{A},\quad P=120\ \text{W}


Summary Checklist

  1. Mark polarities and directions.
  2. Simplify the circuit.
  3. Solve for currents/voltages.
  4. Compute power (VIVI, I2RI^2R, V2/RV^2/R).
  5. Apply passive sign convention.
  6. Verify power balance.