Skip to main content

Logarithms

Definition: the exponent or power to which a base must be raised to yield a given number. Logarithms are the inverse of exponents.

If n=logaxn = \log_a x then an=xa^n = x, so logax\log_a x tells what exponent is needed to make x from a.

Laws of Logarithms

  • loga1=0\log_a {1} = 0
  • logaa=1\log_a {a} = 1
  • loga(x×y)=logax+logay\log_a {(x \times y)} = \log_a {x} + \log_a {y}
  • logaxy=ylogax\log_a {x^y} = y\log_a {x}
  • loga1y=logay\log_a {\frac{1}{y}} = -\log_a {y}
  • logaxy=logaxlogay\log_a {\frac{x}{y}} = \log_a {x} - \log_a {y}
  • logbx=(logba)×logax\log_b {x} = (\log_b {a}) \times \log_a {x}

TODO: what does the last law mean?

Base Transformation Law

logax=logbxlogba\log_a {x} = \frac{\log_b {x}}{\log_b {a}}

Change of base formula